Анилин, свойства, получение, применение. Особенности свойств анилина. Получение и применение аминов Ароматические свойства анилина

Тема 5. НИТРОГЕНОСОДЕРЖАЩИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ

Урок 51

Тема урока. Анилин, его состав, строение молекулы, физические свойства. Химические свойства анилина: взаимодействие с неорганическими кислотами, бромной водой.

Взаимное влияние атомов в молекуле анилина. Получение анилина

Цели урока: ознакомить учащихся с анилином как представителем нитросоединений, его физическими свойствами; дать представление о строении молекулы анилина; рассмотреть химические свойства анилина, способы его получения и применения.

Тип урока: комбинированный урок усвоения знаний, умений и навыков и творческому применению их на практике.

Формы работы: рассказ учителя, эвристическая беседа, лабораторная работа.

Демонстрация 1. Взаимодействие анилина с хлоридной кислотой.

Демонстрация 2. Взаимодействие анилина с бромной водой.

Оборудование: схема строения молекулы анилина.

1. Почему амины называют органическими основаниями?

Три ученика у доски, остальные в тетрадях выполняют задание.

2. Составьте уравнения реакций взаимодействия:

а) метиламина с серной кислотой;

б) диметиламина с нітратною кислотой;

в) метилетиламіну с хлоридной кислотой.

3. Одержте этиламин:

а) из соответствующего нитросоединения;

б) из соответствующего спирта;

в) с етиламоній хлорида.

4. Как классифицируются амины по типу углеводородного радикала?

III. Изучение нового материала

1. История открытия анилина

Анилин (феніламін) - органическое соединение с формулой C 6 H 5 NH 2 , простейший ароматический амин. представляет собой бесцветную маслянистую жидкость с характерным запахом, немного тяжелее воды и плохо в ней растворимый, хорошо растворяется в органических растворителях. На воздухе анилин быстро окисляется и приобретает красно-бурую окраску. Ядовит.

Впервые анилин получил в 1826 г. в процессе перегонки индиго с известью немецкий химик, который дал ему название «кристалін». 1834 г. Ф. Рунге обнаружил анилин в каменноугольной смоле и назвал «кіанолом». 1841. Ю. Ф. Фрішце получил анилин в результате нагрева индиго с раствором КОН и назвал его «анилином». 1842 г. анилин получил М. М. Зинин путем восстановления нітробензену (NH 4)2SO 3 и назвал его «бензидамом». 1843. А. В. Гофман установил идентичность всех перечисленных соединений. Слово «анилин» происходит от названия одного из растений, содержащих индиго - Indigofera anil (современное международное название растения - Indigofera suffruticosa ).

Анилин - простейший ароматический амин. Амины являются более слабыми основаниями, чем аммиак, так как неразделенная электронная пара атома Азота смещается в сторону бензольного кольца, сочетаясь с р-электронами бензольного ядра.

Уменьшение электронной плотности на атоме Азота приводит к снижению способности відщеплювати протоны от слабых кислот. Поэтому анилин - слабее основание, чем алифатические амины и аммиак, взаимодействует только с сильными кислотами (HCl , H 2SO 4), а его водный раствор не окрашивает лакмус в синий цвет.

2. Получение анилина

♦ Предложите способы получения анилина.

Восстановление нитросоединений обычно используют для получения первичных аминов ароматического ряда (реакция Зинина).

Атомарный водород образуется в момент выделения в результате реакции цинка (или алюминия) с кислотой или щелочью.

Изначально анилин получали путем восстановления нітробензену молекулярным водородом; практический выход анилина не превышал 15 %. 1842 г. профессор Казанского университета Н. М. Зинин разработал более рациональный способ получения анилина восстановлением нітробензену (реакция Зинина):

В процессе взаимодействия концентрированной соляной кислоты с железом выделяется атомарный водород, более химически активный по сравнению с молекулярным.

3. Химические свойства анилина

Анилин - слабое основание. С сильными кислотами анилин способен образовывать соли.

Демонстрация 1. Взаимодействие анилина с хлоридной кислотой

Приготовим смесь анилина с водой. Добавим к смеси хлоридную кислоту. Происходит растворение анилина. В растворе образуется феніламоній хлорид, или солянокислый анилин.

Задача 1. Запишите уравнения взаимодействия анилина с серной кислотой.

Аминогруппа влияет на бензольне кольцо, вызывая увеличение подвижности атомов Водорода по сравнению с бензеном, причем, вследствие сопряжения неподеленной электронной пары с п-электронной ароматической системой, увеличивается электронная плотность в орто - и пара-положениях.

В процессе нитрования и бромирования анилин легко образует 2,4,6-трехзамещенные продукты реакции. Например, анилин энергично реагирует с бромной водой с образованием белого осадка 2,4,6-триброманіліну. Эта реакция используется для качественного и количественного определения анилина:

Демонстрация 2. Взаимодействие анилина с бромной водой, Анилин легко окисляется. На воздухе анилин буреет, вследствие действия других окислителей образует вещества разнообразной окраски. С хлорной известью CaOCl 2 дает характерное фиолетовое окрашивание. Это одна из самых чувствительных качественных реакций на анилин.

*Практическое значение имеет реакция анилина с нітритною кислотой при пониженной температуре (около 0 °С). В результате этой реакции (реакции діазотування) образуются соли диазония, которые используются в синтезе нітробарвників и ряда других соединений.

При более высокой температуре реакция происходит с выделением азота, а анилин превращается в фенол:

4. Применение анилина. Вредное воздействие на человека

1) Основная область применения анилина - синтез красителей и лекарственных средств.

Промышленное производство фиолетового красителя мовеїну на базе анилина началось в 1856 г. Путем окисления анилина хромовой смесью (K 2Cr 2O 7 + H 2SO 4) получают «анилиновый черный - краситель для ткани.

Сейчас подавляющая часть (85 %) производимого в мире анилина используется для производства метилдіізоціанатів, что в дальнейшем применяются для производства полиуретанов. Анилин также используется при производстве искусственных каучуков (9 %), гербицидов (2 %) и красителей (2 %).

Итак, анилин применяется преимущественно как полупродукт в производстве красителей, взрывчатых веществ и лекарственных средств (сульфаниламидные препараты), но учитывая ожидаемый рост объемов производства полиуретанов возможно значительное изменение картины потребителей в среднесрочной перспективе.

2) Анилин влияет на центральную нервную систему, вызывает кислородное голодание организма за счет образования в крови метгемоглобина, гемолиза и дегенеративных изменений эритроцитов. В организм анилин попадает во время дыхания, в виде паров, а также через кожу и слизистые оболочки. Всасывание через кожу усиливается в случае нагрева воздуха или употребление алкоголя.

В случае легкого отравлении анилином наблюдаются слабость, головокружение, головная боль, синюшность губ, ушных раковин и ногтей. В случае отравлений средней тяжести также наблюдаются тошнота, рвота, иногда шатание во время ходьбы, учащение пульса. Тяжелые случаи отравления являются крайне редкими.

В случае хронического отравления анилином (анілізм) возникают токсический гепатит, а также нервно-психические расстройства, расстройства сна, ухудшение памяти.

В случае отравления анилином необходимо прежде всего вывести пострадавшего из очага отравления, обмыть теплой (но не горячей!) водой. Также необходимо вдыхание кислорода с карбогеном. Кроме этого, применяют кровопускание, введение антидотов (метиленовая синь), сердечно-сосудистых средств. Следует обеспечить пострадавшему покой.

IV. Подведение итогов урока

Подводим итоги урока, оценивает работу учащихся на уроке.

V. Домашнее задание

Проработать материал параграфа, ответить на вопросы к нему, выполнить упражнения.

Творческое задание: найти информацию по теме «Влияние анилина на окружающую среду».

Тип урока: урок изучения нового материала на основе имеющихся знаний

Цель урока: Обобщить, расширить и систематизировать знания и понятия учеников по изученному разделу «Амины». Акцентировать внимание на ключевых понятиях темы «Анилин».

Прогнозируемый результат: Знания будут обобщены и систематизированы с целью.

Задачи урока:

Образовательные:

Проверить знания по изученному разделу, закрепить новый материал, углубить знания по теме; обобщить изученный материал; проверить усвоение материала на основе творче­ских заданий; формировать умения применять полученные знания на практике при выполнении упражнений и решении задач;

Развивающие:

Способствовать становлению умения оценивать товарища и самого себя развивать умение высказывать свою точку зрения, вести аргументированный разговор, делать выводы на основе анализа; помочь учащимся увидеть результаты своего труда; формировать у учащихся умения выделять главное; развивать познавательную активность и творческие способности.

Воспитательные:

Воспитывать активную жизненную позицию, честность, человеческую порядочность; воспитывать в учениках средствами урока уверен­ность в своих силах; подвести учащихся к выводу о самоценности че­ловеческих качеств.

Ход урока

I Организационно-мотивационный этап (1 мин)

Цель этапа (ожидаемый результат): мотивировать учащихся на активную работу

Задачи этапа: Настроить учащихся на высокий темп урока

Приветствие учащихся на уроке. Сегодня наш урок будет очень насыщенным, и перед нами будет стоять ряд задач.

Но прежде запишите Д-З Слайд 2 Домашнее задание

(запись в дневник)

1. § 52, § 51повторить.

2. § 52, №4-6 письменно, 1-3 устно

I I Целеполагание (1,5 мин)

Цель: Обобщить знания по пройденному разделу «Амины», приобрести знания по теме урока, уметь сравнивать анилин с другими представителями ароматических и с алифатическими аминами

Задачи: Слайд 3 Задачи на уроке

Вспомнить физические и химические свойства аминов; продолжать формировать умение составлять уравнения реакций, характеризующих свойства аминов; познакомиться с особенностями химических процессов по разделу «Анилин»; продолжать учиться видеть причину течения хим. реакций в зависимости от строения молекулы; оценить свою работу на уроке.

III Основная часть. Изучение нового с опорой на известные факты

Строение аминов и анилина

Изучение нового материала на базе имеющихся знаний

Амины — органические производные , в молекуле которого один, два или все три атома замещены углеводородным остатком.

Соответственно обычно выделяют три типа аминов:

первичный амин метиламин

CH3CH2—NH—CH2CH3

вторичный амин диэтиламин

H3CСH2—N—CH2CH3

третичный амин триэтиламин

Для аминов характерна структурная изомерия:

Изомерия углеродного скелета

Изомерия положения функциональной группы

Первичные, вторичные и третичные амины изомерны друг другу (межклассовая изомерия).

Тренинг по изомерии и номенклатуре аминов

Изучение нового материала

Электронное строение анилина

Амины, в которых аминогруппа связана непосредственно связана с ароматическим кольцом, называются ароматическими аминами.

Простейшим представителем этих соединений является аминобензол, или анилин.

Основной отличительной чертой электронного строения аминов является наличие у атома , входящего в функциональную группу, неподеленной электронной пары. Это приводит к тому, что амины проявляют свойства оснований.

Существуют ионы, которые являются продуктом формального замещения на углеводородный радикал всех атомов водорода в ионе аммония.

Эти ионы входят в состав солей, похожих на соли аммония. Они называются четвертичными солями.

Тренинг по изомерии и номенклатуре ароматических аминов

Изучение физических свойств анилина в сравнении с физическими свойствами аминов

Физические свойства аминов и анилина

Простейшие амины (метиламин, диметиламин, триметил-амин) — газообразные вещества. Остальные низшие амины — жидкости, которые хорошо растворяются в воде. Имеют характерный запах, напоминающий запах аммиака.

Первичные и вторичные амины способны образовывать водородные связи. Это приводит к заметному повышению их температур кипения по сравнению с соединениями, имеющими ту же молекулярную массу, но неспособными образовывать водородные связи.

Анилин — маслянистая жидкость, ограниченно растворимая в воде, кипящая при температуре 184 °С.

Русский химик-органик, академик.

открыл (1842) реакцию восстановления ароматических нитросоединений и получил анилин. Доказал, что амины — основания, способные образовывать соли с различными кислотами. Анилин имеет такое большое промышленное значение, что за одну только реакцию имя этого учёного может быть вписано «золотыми буквами в историю химии.

Химические свойства аминов и анилина

Химические свойства аминов определяются в основном наличием у атома азота неподеленной электронной пары.

1. Амины как основания. Атом азота аминогруппы, подобно атому азота в молекуле аммиака, за счет неподеленной пары электронов может образовывать ковалентную связь по донорно-акцепторному механизму, выступая в роли донора. В связи с этим амины, как и аммиак, способны присоединять катион водорода, т. е. выступать в роли основания.

Как вы уже знаете из курса , реакция аммиака с водой приводит к образованию гидроксид-ионов. Раствор аммиака в воде имеет щелочную реакцию. Растворы аминов в воде также дают щелочную реакцию. А вот анилин является более слабым основанием и с взаимодействует неохотно.

Аммиак, реагируя с кислотами, образует соли аммония. Амины также способны вступать в реакцию с кислотами.

Основные свойства алифатических аминов выражены сильнее, чем у аммиака. Это связано с наличием одного и более донорных алкильных заместителей, положительный индуктивный эффект которых повышает электронную плотность на атоме азота. Повышение электронной плотности превращает азот в более сильного донора пары электронов, что повышает его основные свойства.

Так же и анилин в реакциях с кислотами основные свойства, но они менее выражены, чем у алифатических аминов.

В случае ароматических аминов аминогруппа и бензольное кольцо оказывают существенное влияние друг на друга.

Аминогруппа является ориентантом первого рода. Аминогруппа обладает отрицательным индуктивным эффектом и выраженным положительным мезомерным эффектом. Таким образом, реакции электрофильного замещения (бромирование, нитрование) будут приводить к орто - и пара-замещенным продуктам.

Обратим внимание, что в отличие от бензола, который бромируется только в присутствии катализатора — хлорида железа(III), анилин способен реагировать с бромной водой. Это объясняется тем, что аминогруппа, повышая электронную плотность в бензольном кольце (вспомните аналогичное влияние заместителей в молекулах толуола и фенола), активизирует ароматическую систему в реакциях электрофильного замещения. Кроме того, анилин, в отличие от бензола, немного растворим в воде.

Сопряжение п-системы бензольного кольца с неподеленной электронной парой аминогруппы приводит к тому, что анилин является существенно более слабым основанием, чем алифатические амины.

Особенности реакций полного и неполного окисления аминов и анилина, взаимный переход реакций окисления и восстановления показать.

ЗАПИСЫВАЮТСЯ ВСЕ ПРИМЕРЫ УХР, НАЗЫВАЮТСЯ ПРОДУКТЫ (объяснение ведётся в форме эвристической беседы)

Получение аминов и анилина

1. Получение аминов из галогенопроизводных

СН3СН2Вг + NН3 —> СН3СН2NH2 С6Н5Вг + NН3 —> С6Н5NH2

2. Получение первичных аминов восстановлением нитросоединений — алифатических и ароматических. Восстановителем является водород «в момент выделения», который образуется при взаимодействии, например, цинка со щелочью или железа с соляной кислотой.

Применение аминов и анилина

Амины широко применяются для получения лекарств, полимерных материалов. Анилин — важнейшее соединение данного класса (схема), которое используют для производства анилиновых красителей, лекарств (сульфаниламидных препаратов), полимерных материалов (анилиноформальдегидных смол), взрывчатые вещества, ракетное топливо, пестициды.

«Активные» или «реактивные» красители - лучший выбор из анилиновых красителей, существующих на современном рынке. Эта группа красителей превосходно зарекомендовала себя для тканей из волокон растительного происхождения (хлопок, лён, вискоза, конопля, бамбук, бумага, джут и т. д.).

IV Закрепление изученного материала

1. Укажите число у-связей в молекуле метил-фенил-амина:
а) 6; б) 5; в) 7; г) 4.

2. Какие свойства анилина объясняются влиянием фенильного радикала на аминогруппу:

а) анилин вступает в реакции замещения легче, чем бензол;

б) электронная плотность в ароматическом кольце распределена неравномерно;

в) в отличие от аммиака водный раствор анилина не изменяет окраски лакмуса;

г) как основание анилин слабее, чем аммиак?

3. Напишите графические формулы изомерных аминов с общей молекулярной формулой С4Н11N. Назовите эти вещества.

4. а)Из неорганического сырья получите хлоридфенил аммония.

HC1 + KOH спирт +HI +NH3 +HC1

б) Пропанол-2 → ? → ? → ? → ? → ?

5. Найдите массу 19,6%-ного раствора серной кислоты, способного прореагировать с 11,2 л метиламина (н. у.) с образованием средней соли.

6. Смесь фенола и анилина полностью прореагировала с 480 г. бромной воды с w (Вr2) = 3 %. На нейтрализацию продуктов реакции затратили 36,4 см3 раствора NаОН (w = 10%, р=1,2 г/см3). Определите массовые доли веществ в исходной смеси.

7. На нейтрализацию 30 г смеси бензола, фенола и анилина нужно 49,7 мл 17% НС1 (p = 1,0 г/мл). В реакции такого же количества смеси с бромной водой образуется 99,05 г осадка. Найдите массовые доли компонентов в исходной смеси.

V Оценка деятельности класса. Рефлексия.


Амины вошли в нашу жизнь совершенно неожиданно. Еще недавно это были ядовитые вещества, столкновение с которыми могло привести к смерти. И вот, спустя полтора столетия, мы активно пользуемся синтетическими волокнами, тканями, строительными материалами, красителями, в основе которых лежат амины. Нет, они не стали безопаснее, просто люди смогли их "приручить" и подчинить, извлекая для себя определенную пользу. О том, какую именно, и поговорим далее.

Определение

Для качественного и количественного определение анилина в растворах или соединениях используется реакция с в конце которой на дно пробирки выпадает белый осадок в виде 2,4,6-триброманилина.

Амины в природе

Амины встречаются в природе повсеместно в виде витаминов, гормонов, промежуточных продуктов обмена, есть они и в организме животных и в растениях. Кроме того, при гниении живых организмов также получаются средние амины, которые в жидком состоянии распространяют неприятный запах селедочного рассола. Широко описанный в литературе «трупный яд» появился именно благодаря специфическому амбре аминов.

Длительное время рассматриваемые нами вещества путали с аммиаком из-за похожего запаха. Но в середине девятнадцатого века французский химик Вюрц смог синтезировать метиламин и этиламин и доказать, что при сгорании они выделяют углеводород. Это было принципиальным отличием упомянутых соединений от аммиака.

Получение аминов в промышленных условиях

Так как атом азота в аминах находится в низшей степени окисления, то восстановление азотосодержащих соединений является наиболее простым и доступным способом их получения. Именно он широко распространен в промышленной практике из-за своей дешевизны.

Первый метод представляет собой восстановление нитросоединений. Реакция, во время которой образуется анилин, носит название ученого Зинина и была проведена в первый раз в середине девятнадцатого века. Второй способ заключается в восстановлении амидов при помощи алюмогидрида лития. Из нитрилов тоже можно восстановить первичные амины. Третий вариант - реакции алкилирования, то есть введение алкильных групп в молекулы аммиака.

Применение аминов

Сами по себе, в виде чистых веществ, амины используются мало. Один из редких примеров - полиэтиленполиамин (ПЭПА), который в бытовых условиях облегчает затвердение эпоксидной смолы. В основном первичный, третичный или вторичный амин - это промежуточный продукт в производстве различных органических веществ. Самым востребованным является анилин. Он - основа большой палитры анилиновых красителей. Цвет, который получится в конце, зависит непосредственно от выбранного сырья. Чистый анилин дает синий цвет, а смесь анилина, орто- и пара-толуидина будет красной.

Алифатические амины нужны для получения полиамидов, таких как нейлон и другие Они применяются в машиностроении, а также в производстве канатов, тканей и пленок. Кроме того, алифатические диизоцинаты используются в изготовлении полиуретанов. Из-за своих исключительных свойств (легкость, прочность, эластичность и способность прикрепляться к любым поверхностям) они востребованы в строительстве (монтажная пена, клей) и в обувной промышленности (противоскользящая подошва).

Медицина - еще одна сфера, где применяются амины. Химия помогает синтезировать из них антибиотики группы сульфаниламидов, которые успешно применяют в качестве препаратов второй линии, то есть резервной. На случай, если у бактерий разовьется устойчивость к основным лекарствам.

Вредное воздействие на организм человека

Известно, что амины - это весьма токсичные вещества. Вред здоровью может нанести любое взаимодействие с ними: вдыхание паров, контакт с открытой кожей или попадание соединений внутрь организма. Смерть наступает от нехватки кислорода, так как амины (в частности, анилин) связываются с гемоглобином крови и не дают ему захватывать молекулы кислорода. Тревожными симптомами являются одышка, посинение носогубного треугольника и кончиков пальцев, тахипноэ (учащенное дыхание), тахикардия, потеря сознания.

В случае попадания этих веществ на оголенные участки тела необходимо быстро убрать их ватой, предварительно смоченной в спирте. Делать это надо максимально аккуратно, чтобы не увеличить площадь загрязнения. Если появятся симптомы отравления - обязательно нужно обратиться к врачу.

Алифатические амины - это яд для нервной и сердечно-сосудистой систем. Они могут вызвать угнетение функций печени, ее дистрофию и даже онкологические заболевания мочевого пузыря.

Билет№19

Задача. Вычислить объем углекислого газа, полученного при сгорании 8 грамм метана.

1. Окислительно – восстановительные реакции (на примере взаимодействия алюминия с оксидами некоторых металлов, концентрированной серной кислоты с медью).

Окислительно-восстановительные реакции (разобрать на примерах взаимодействия алюминия с оксидом железа (III), азотной кислоты с медью).

К окислительно-восстановительным реакциям могут быть отнесены химические реак-ции следующих типов.

Реакции замещения (вытеснения)

Примером реакций этого типа может служить реакция между оксидом железа (III) и алюминием. В этой реакции алюминий вытесняет железо из раствора, причем сам алюминий окисляется, а железо восстанавливается.

Приведем еще два примера:

В этой реакции хлор вытесняет бром из раствора (хлор окисляется, бром восстанавливается), содержащего ионы брома.

Реакции металла с кислотами

Эти реакции, в сущности, тоже представляют собой реакции замещения. В качестве примера приведем реакцию между медью и азотной кислотой. Медь вытесняет водород из кислоты. При этом происходит окисление меди, которая превращается в гидратированный катион, а содержащиеся в растворе кислоты гидратированные протоны азота восстанавливаются, образуя оксид азота.

Реакции металлов с водой

Эти реакции тоже принадлежат к типу реакций замещения. Они сопровождаются вытеснением из воды водорода в газообразном состоянии. В качестве примера приведем реакцию между металлическим натрием и водой:

Реакции металлов с неметаллами

Эти реакции могут быть отнесены к реакциям синтеза. В качестве примера приведем образование хлорида натрия в результате сгорания натрия в атмосфере хлора

2. Анилин – представитель аминов, химическое строение и свойства.

Основные свойства анилина: а) ароматический амин – анилин имеет большое практическое значение; б) анилин C6H5NH2 – это бесцветная жидкость, которая плохо растворяется в воде; в) имеет светло-коричневую окраску при частичном окислении на воздухе; г) анилин сильно ядовит. Основные свойства у анилина проявляются слабее, чем у аммиака и аминов предельного ряда. 1. Анилин не изменяет окраски лакмуса, но при взаимодействии с кислотами образует соли. 2. Если к анилину прилить концентрированную соляную кислоту, то происходит экзотермическая реакция и после охлаждения смеси можно наблюдать образование кристаллов соли: +Cl-– хлорид фениламмония. 3. Если на раствор хлорида фениламмония подействовать раствором щелочи, то снова выделится анилин: [С6Н5NН3]++ Сl-+ Nа++ ОН-? Н2О + С6Н5NН2 + Nа++ СI-. Здесь выражено влияние ароматического радикала фенила – С6Н5. 4. В анилине C6H5NH2 бензольное ядро смещает к себе неподеленную электронную пару азота аминогруппы. При этом электронная плотность на азоте уменьшается и он слабее связывает ион водорода, а это значит, что свойства вещества как основания проявляются в меньшей степени. 5. Аминогруппа влияет на бензольное ядро. 6. Бром в водном растворе не реагирует с бензолом. Способы применения анилина: 1) анилин– один из важнейших продуктов химической промышленности; 2) он является исходным веществом для получения многочисленных анилиновых красителей; 3) анилин используется при получении лекарственных веществ, например сульфаниламидных препаратов, взрывчатых веществ, высокомолекулярных соединений и т. д. Открытие профессором Казанского университета Н.Н. Зининым (1842 г.) доступного способа получения анилина имело большое значение для развития химии и химической промышленности. 1. Промышленность органического синтеза началась с производства красителей. 2. Широкое развитие этого производства стало возможным на основе использования реакции получения анилина, известной сейчас в химии под названием реакции Зинина. Особенности реакции Зинина: 1) эта реакция заключается в восстановлении нитробензола и выражается уравнением: С6Н5-NO2 + 6Н? С6Н5-NН2 + 2Н2О; 2) распространенным промышленным способом получения анилина является восстановление нитробензола металлами, например железом (чугунными стружками), в кислой среде; 3) восстановление нитросоединений соответствующего строения – это общий способ получения аминов.

В разделе на вопрос Анилин-представитель аминов,строение,функциональная группа!? заданный автором Волосок лучший ответ это Анили́н (фениламин) - органическое соединение с формулой С6H5NH2, простейший ароматический амин. Содержит аминогруппу -NH2. Представляет собой бесцветную маслянистую жидкость с характерным запахом, немного тяжелее воды и плохо в ней растворим, хорошо растворяется в органических растворителях. На воздухе быстро окисляется и приобретает красно-бурую окраску. Ядовит.
Для анилина характерны реакции как по аминогруппе, так и по ароматическому кольцу. Особенности этих реакций обусловлены взаимным влиянием атомов. С одной стороны, бензольное кольцо ослабляет основные свойства аминогруппы по сравнению алифатическими аминами и даже с аммиаком. С другой стороны, под влиянием аминогруппы бензольное кольцо становится более активным в реакциях замещения, чем бензол. Например, анилин энергично реагирует с бромной водой с образованием 2,4,6-триброманилина (белый осадок) .
Осн. способ произ-ва анилина-каталитич. восстановление нитробензола водородом в газовой или жидкой фазе. Газофазный процесс осуществляют в трубчатом контактном аппарате при 250-350°С на никель- или медьсодержащем кат
С6Н5NO2 + 3H2 = C6H5NH2 + 2H2O + 443,8кДж/моль
Анилин отделяется от воды расслаиванием и очищается дистилляцией; реакц. вода обезвреживается биохимически. Для получения 1 т анилина расходуется 1,35 т нитробензола, 800 м3 Н2 и 1 кг катализатора.
В жидкой фазе анилин получают при повыш. давлении Н2 (до 1,1 МПа) и 160-170°С на никелевом или палладиевом кат. с одноврем. отгонкой воды и анилина благодаря теплоты р-ции.

Понравилась статья? Поделиться с друзьями: